To be able to edit code and run cells, you need to run the notebook yourself. Where would you like to run the notebook?

In the cloud (experimental)

Binder is a free, open source service that runs scientific notebooks in the cloud! It will take a while, usually 2-7 minutes to get a session.

On your computer

(Recommended if you want to store your changes.)

  1. Copy the notebook URL:
  2. Run Pluto

    (Also see: How to install Julia and Pluto)

  3. Paste URL in the Open box

Frontmatter

If you are publishing this notebook on the web, you can set the parameters below to provide HTML metadata. This is useful for search engines and social media.

Author 1
👀 Reading hidden code
130 μs

👀 Reading hidden code
14.5 μs

Welcome to 18.S191 – Fall 2020!

Introduction to Computational Thinking for Real-World Problems

👀 Reading hidden code
41.5 ms

👀 Reading hidden code
12.6 μs
👀 Reading hidden code
58.9 ms

👀 Reading hidden code
13.8 μs
Alan Edelman, David P. Sanders, Grant Sanderson, James Schloss
👀 Reading hidden code
5.3 ms
& Philip the Corgi
👀 Reading hidden code
201 μs

Class outline

Data and computation

  • Module 1: Analyzing images

  • Module 2: Particles and ray tracing

  • Module 3: Epidemic spread

  • Module 4: Climate change

👀 Reading hidden code
9.4 ms

Tools

👀 Reading hidden code
5.3 ms

Module 1: Images

👀 Reading hidden code
198 μs
8
4 + 4
👀 Reading hidden code
12.2 μs

Data takes many forms

  • Time series:

    • Number of infections per day

    • Stock price each minute

    • A piece for violin broadcast over the radio


  • Video:

    • The view from a window of a self-driving car

    • A hurricane monitoring station


  • Images:

    • Diseased versus healthy tissue in a scan

    • Deep space via the Hubble telescope

    • Can your social media account recognise your friends?

👀 Reading hidden code
7.2 ms

Capture your own image!

👀 Reading hidden code
188 μs
👀 Reading hidden code
67.3 μs
Enable webcam
@bind raw_camera_data camera_input(;max_size=2000)
👀 Reading hidden code
46.1 ms

👀 Reading hidden code
174 μs
Error message

Another cell defining grant contains errors.

[
grant grant[:,end:-1:1]
grant[end:-1:1,:] grant[end:-1:1,end:-1:1]
]
👀 Reading hidden code
---
Error message

MethodError: no method matching getindex(::Missing, ::String)

Stack trace

Here is what happened, the most recent locations are first:

  1. process_raw_camera_data(raw_camera_data::Missing)
    	# So to get the red values for each pixel, we take every 4th value, starting at 	# the 1st:	reds_flat = UInt8.(raw_camera_data["data"][1:4:end])	greens_flat = UInt8.(raw_camera_data["data"][2:4:end])	blues_flat = UInt8.(raw_camera_data["data"][3:4:end])
  2. Show more...
grant = decimate(process_raw_camera_data(raw_camera_data), 2)
👀 Reading hidden code
---

What is an image?

👀 Reading hidden code
177 μs

Albrecht Dürer:

👀 Reading hidden code
199 μs

👀 Reading hidden code
1.9 ms

An image is:

  • A 2D representation of a 3D world

  • An approximation

👀 Reading hidden code
447 μs

What is an image, though?

  • A grid of coloured squares called pixels

  • A colour for each pair (i,j) of indices

  • A discretization

👀 Reading hidden code
5.7 ms

How can we store an image in the computer?

  • Is it a 1D array (Vector)?

  • A 2D array (Matrix)?

  • A 3D array (tensor)?

👀 Reading hidden code
518 μs

If in doubt: Ask Julia!

  • Let's use the Images.jl package to load an image and see what we get

👀 Reading hidden code
385 μs
begin
import Pkg
Pkg.activate(mktempdir())
end
👀 Reading hidden code
❔
  Activating new project at `/tmp/jl_4mrqNz`
132 ms
begin
Pkg.add(["Images", "ImageIO", "ImageMagick"])
using Images
end
👀 Reading hidden code
❔
    Updating registry at `~/.julia/registries/General.toml`
   Resolving package versions...
    Updating `/tmp/jl_4mrqNz/Project.toml`
  [82e4d734] + ImageIO v0.6.9
  [6218d12a] + ImageMagick v1.4.0
  [916415d5] + Images v0.26.2
    Updating `/tmp/jl_4mrqNz/Manifest.toml`
  [621f4979] + AbstractFFTs v1.5.0
  [79e6a3ab] + Adapt v3.7.2
  [66dad0bd] + AliasTables v1.1.3
  [ec485272] + ArnoldiMethod v0.4.0
  [4fba245c] + ArrayInterface v7.5.1
  [13072b0f] + AxisAlgorithms v1.1.0
  [39de3d68] + AxisArrays v0.4.7
  [62783981] + BitTwiddlingConvenienceFunctions v0.1.6
  [fa961155] + CEnum v0.5.0
  [2a0fbf3d] + CPUSummary v0.2.6
  [aafaddc9] + CatIndices v0.2.2
  [d360d2e6] + ChainRulesCore v1.25.1
  [9e997f8a] + ChangesOfVariables v0.1.9
  [fb6a15b2] + CloseOpenIntervals v0.1.13
  [aaaa29a8] + Clustering v0.15.8
  [35d6a980] + ColorSchemes v3.29.0
  [3da002f7] + ColorTypes v0.12.0
  [c3611d14] + ColorVectorSpace v0.11.0
  [5ae59095] + Colors v0.13.0
  [bbf7d656] + CommonSubexpressions v0.3.1
  [34da2185] + Compat v4.16.0
  [ed09eef8] + ComputationalResources v0.3.2
  [187b0558] + ConstructionBase v1.5.8
  [150eb455] + CoordinateTransformations v0.6.3
  [adafc99b] + CpuId v0.3.1
  [dc8bdbbb] + CustomUnitRanges v1.0.2
  [9a962f9c] + DataAPI v1.16.0
  [864edb3b] + DataStructures v0.18.20
  [163ba53b] + DiffResults v1.1.0
  [b552c78f] + DiffRules v1.15.1
  [b4f34e82] + Distances v0.10.12
  [ffbed154] + DocStringExtensions v0.9.3
  [4f61f5a4] + FFTViews v0.3.2
  [7a1cc6ca] + FFTW v1.8.1
  [5789e2e9] + FileIO v1.17.0
  [53c48c17] + FixedPointNumbers v0.8.5
  [f6369f11] + ForwardDiff v0.10.38
  [a2bd30eb] + Graphics v1.1.3
  [86223c79] + Graphs v1.12.0
  [2c695a8d] + HistogramThresholding v0.3.1
  [3e5b6fbb] + HostCPUFeatures v0.1.17
  [615f187c] + IfElse v0.1.1
  [2803e5a7] + ImageAxes v0.6.12
  [c817782e] + ImageBase v0.1.7
  [cbc4b850] + ImageBinarization v0.3.1
  [f332f351] + ImageContrastAdjustment v0.3.12
  [a09fc81d] + ImageCore v0.10.5
  [89d5987c] + ImageCorners v0.1.3
  [51556ac3] + ImageDistances v0.2.17
  [6a3955dd] + ImageFiltering v0.7.9
  [82e4d734] + ImageIO v0.6.9
  [6218d12a] + ImageMagick v1.4.0
  [bc367c6b] + ImageMetadata v0.9.10
  [787d08f9] + ImageMorphology v0.4.5
  [2996bd0c] + ImageQualityIndexes v0.3.7
  [80713f31] + ImageSegmentation v1.8.4
  [4e3cecfd] + ImageShow v0.3.8
  [02fcd773] + ImageTransformations v0.10.1
  [916415d5] + Images v0.26.2
  [9b13fd28] + IndirectArrays v1.0.0
  [d25df0c9] + Inflate v0.1.5
  [1d092043] + IntegralArrays v0.1.6
  [a98d9a8b] + Interpolations v0.15.1
  [8197267c] + IntervalSets v0.7.10
  [3587e190] + InverseFunctions v0.1.17
  [92d709cd] + IrrationalConstants v0.2.4
  [c8e1da08] + IterTools v1.4.0
  [033835bb] + JLD2 v0.5.11
  [692b3bcd] + JLLWrappers v1.7.0
  [b835a17e] + JpegTurbo v0.1.5
  [10f19ff3] + LayoutPointers v0.1.17
  [8cdb02fc] + LazyModules v0.3.1
  [2ab3a3ac] + LogExpFunctions v0.3.28
  [bdcacae8] + LoopVectorization v0.12.171
  [1914dd2f] + MacroTools v0.5.15
  [d125e4d3] + ManualMemory v0.1.8
  [dbb5928d] + MappedArrays v0.4.2
  [626554b9] + MetaGraphs v0.8.0
  [e1d29d7a] + Missings v1.2.0
  [e94cdb99] + MosaicViews v0.3.4
  [77ba4419] + NaNMath v1.0.3
  [b8a86587] + NearestNeighbors v0.4.21
  [f09324ee] + Netpbm v1.1.1
  [6fe1bfb0] + OffsetArrays v1.15.0
  [52e1d378] + OpenEXR v0.3.3
  [bac558e1] + OrderedCollections v1.8.0
  [f57f5aa1] + PNGFiles v0.4.4
  [5432bcbf] + PaddedViews v0.5.12
  [d96e819e] + Parameters v0.12.3
  [eebad327] + PkgVersion v0.3.3
  [1d0040c9] + PolyesterWeave v0.2.2
  [f27b6e38] + Polynomials v4.0.19
  [aea7be01] + PrecompileTools v1.2.1
  [21216c6a] + Preferences v1.4.3
  [92933f4c] + ProgressMeter v1.10.2
  [43287f4e] + PtrArrays v1.3.0
  [4b34888f] + QOI v1.0.1
  [94ee1d12] + Quaternions v0.7.6
  [b3c3ace0] + RangeArrays v0.3.2
  [c84ed2f1] + Ratios v0.4.5
  [c1ae055f] + RealDot v0.1.0
  [3cdcf5f2] + RecipesBase v1.3.4
  [189a3867] + Reexport v1.2.2
  [dee08c22] + RegionTrees v0.3.2
  [ae029012] + Requires v1.3.1
  [6038ab10] + Rotations v1.7.1
  [fdea26ae] + SIMD v3.7.1
  [94e857df] + SIMDTypes v0.1.0
  [476501e8] + SLEEFPirates v0.6.43
  [efcf1570] + Setfield v1.1.2
  [699a6c99] + SimpleTraits v0.9.4
  [47aef6b3] + SimpleWeightedGraphs v1.4.0
  [45858cf5] + Sixel v0.1.3
  [a2af1166] + SortingAlgorithms v1.2.1
  [276daf66] + SpecialFunctions v2.5.0
  [cae243ae] + StackViews v0.1.1
  [aedffcd0] + Static v0.8.9
  [0d7ed370] + StaticArrayInterface v1.6.0
  [90137ffa] + StaticArrays v1.9.13
  [1e83bf80] + StaticArraysCore v1.4.3
  [82ae8749] + StatsAPI v1.7.0
  [2913bbd2] + StatsBase v0.34.4
  [62fd8b95] + TensorCore v0.1.1
  [8290d209] + ThreadingUtilities v0.5.2
  [731e570b] + TiffImages v0.11.3
  [06e1c1a7] + TiledIteration v0.5.0
  [3bb67fe8] + TranscodingStreams v0.11.3
  [3a884ed6] + UnPack v1.0.2
  [3d5dd08c] + VectorizationBase v0.21.71
  [e3aaa7dc] + WebP v0.1.3
  [efce3f68] + WoodburyMatrices v1.0.0
  [f5851436] + FFTW_jll v3.3.10+3
  [61579ee1] + Ghostscript_jll v9.55.0+4
  [59f7168a] + Giflib_jll v5.2.3+0
  [c73af94c] + ImageMagick_jll v7.1.1+1
  [905a6f67] + Imath_jll v3.1.11+0
  [1d5cc7b8] + IntelOpenMP_jll v2025.0.4+0
  [aacddb02] + JpegTurbo_jll v3.1.1+0
  [88015f11] + LERC_jll v3.0.0+1
  [d4300ac3] + Libgcrypt_jll v1.11.0+0
  [7e76a0d4] + Libglvnd_jll v1.7.0+0
  [7add5ba3] + Libgpg_error_jll v1.51.1+0
  [94ce4f54] + Libiconv_jll v1.18.0+0
  [89763e89] + Libtiff_jll v4.4.0+0
  [d3a379c0] + LittleCMS_jll v2.12.0+0
  [856f044c] + MKL_jll v2025.0.1+1
  [18a262bb] + OpenEXR_jll v3.2.4+0
  [643b3616] + OpenJpeg_jll v2.4.0+0
  [efe28fd5] + OpenSpecFun_jll v0.5.6+0
  [02c8fc9c] + XML2_jll v2.13.6+1
  [aed1982a] + XSLT_jll v1.1.42+0
  [4f6342f7] + Xorg_libX11_jll v1.8.6+3
  [0c0b7dd1] + Xorg_libXau_jll v1.0.12+0
  [a3789734] + Xorg_libXdmcp_jll v1.1.5+0
  [1082639a] + Xorg_libXext_jll v1.3.6+3
  [14d82f49] + Xorg_libpthread_stubs_jll v0.1.2+0
  [c7cfdc94] + Xorg_libxcb_jll v1.17.0+3
  [c5fb5394] + Xorg_xtrans_jll v1.5.1+0
  [3161d3a3] + Zstd_jll v1.5.7+1
  [b53b4c65] + libpng_jll v1.6.47+0
  [075b6546] + libsixel_jll v1.10.5+0
  [c5f90fcd] + libwebp_jll v1.4.0+0
  [1317d2d5] + oneTBB_jll v2022.0.0+0
  [0dad84c5] + ArgTools
  [56f22d72] + Artifacts
  [2a0f44e3] + Base64
  [ade2ca70] + Dates
  [8ba89e20] + Distributed
  [f43a241f] + Downloads
  [7b1f6079] + FileWatching
  [9fa8497b] + Future
  [b77e0a4c] + InteractiveUtils
  [4af54fe1] + LazyArtifacts
  [b27032c2] + LibCURL
  [76f85450] + LibGit2
  [8f399da3] + Libdl
  [37e2e46d] + LinearAlgebra
  [56ddb016] + Logging
  [d6f4376e] + Markdown
  [a63ad114] + Mmap
  [ca575930] + NetworkOptions
  [44cfe95a] + Pkg
  [de0858da] + Printf
  [3fa0cd96] + REPL
  [9a3f8284] + Random
  [ea8e919c] + SHA
  [9e88b42a] + Serialization
  [1a1011a3] + SharedArrays
  [6462fe0b] + Sockets
  [2f01184e] + SparseArrays
  [10745b16] + Statistics
  [4607b0f0] + SuiteSparse
  [fa267f1f] + TOML
  [a4e569a6] + Tar
  [8dfed614] + Test
  [cf7118a7] + UUIDs
  [4ec0a83e] + Unicode
  [e66e0078] + CompilerSupportLibraries_jll
  [deac9b47] + LibCURL_jll
  [29816b5a] + LibSSH2_jll
  [c8ffd9c3] + MbedTLS_jll
  [14a3606d] + MozillaCACerts_jll
  [4536629a] + OpenBLAS_jll
  [05823500] + OpenLibm_jll
  [83775a58] + Zlib_jll
  [8e850b90] + libblastrampoline_jll
  [8e850ede] + nghttp2_jll
  [3f19e933] + p7zip_jll
9.4 s
"https://i.imgur.com/VGPeJ6s.jpg"
# defines a variable called `url`
# whose value is a string (written inside `"`):

url = "https://i.imgur.com/VGPeJ6s.jpg"
👀 Reading hidden code
11.8 μs
"philip.jpg"
philip_file = download(url, "philip.jpg") # download to a local file
👀 Reading hidden code
280 ms
philip = load(philip_file)
👀 Reading hidden code
632 ms
philip
👀 Reading hidden code
13.6 μs
Matrix{RGB{N0f8}} (alias for Array{RGB{Normed{UInt8, 8}}, 2})
typeof(philip)
👀 Reading hidden code
11.1 μs
RGBX(0.9, 0.1, 0.1)
👀 Reading hidden code
24.9 μs

👀 Reading hidden code
223 μs

👀 Reading hidden code
69.6 μs

👀 Reading hidden code
191 μs
Matrix{RGB{N0f8}} (alias for Array{RGB{Normed{UInt8, 8}}, 2})
typeof(philip)
👀 Reading hidden code
10.9 μs

  • According to Julia / Pluto, the variable philip is an image

  • Julia always returns output

  • The output can be displayed in a "rich" way


  • Arthur C. Clarke:

Any sufficiently advanced technology is indistinguishable from magic.

👀 Reading hidden code
4.3 ms
size(philip)
👀 Reading hidden code
13.4 μs
philip
👀 Reading hidden code
17.3 μs
philip[1:1000, 1:400]
👀 Reading hidden code
518 μs

How big is Philip?

  • He's pretty big:

👀 Reading hidden code
313 μs
size(philip)
👀 Reading hidden code
11.2 μs
  • Which number is which?

👀 Reading hidden code
262 μs
philip
👀 Reading hidden code
8.5 μs

So, what is an image?

👀 Reading hidden code
14.3 ms
Matrix{RGB{N0f8}} (alias for Array{RGB{Normed{UInt8, 8}}, 2})
typeof(philip)
👀 Reading hidden code
11.1 μs
  • It's an Array

  • The 2 means that it has 2 dimensions (a matrix)


  • RGBX{Normed{UInt8,8}} is the type of object stored in the array

  • A Julia object representing a colour

  • RGB = Red, Green, Blue

👀 Reading hidden code
813 μs

Getting pieces of an image

👀 Reading hidden code
212 μs
begin
(h, w) = size(philip)
head = philip[(h ÷ 2):h, (w ÷ 10): (9w ÷ 10)]
# `÷` is typed as \div <TAB> -- integer division
end
👀 Reading hidden code
4.8 ms
size(head)
👀 Reading hidden code
12.4 μs
size(philip)
👀 Reading hidden code
11.4 μs

Manipulating matrices

  • An image is just a matrix, so we can manipulate matrices to manipulate the image

👀 Reading hidden code
412 μs
[head head]
👀 Reading hidden code
5.1 ms

👀 Reading hidden code
173 μs
[
head reverse(head, dims=2)
reverse(head, dims=1) reverse(reverse(head, dims=1), dims=2)
]
👀 Reading hidden code
185 ms

Manipulating an image

  • How can we get inside the image and change it?

  • There are two possibilities:

    • Modify (mutate) numbers inside the array – useful to change a small piece

    • Create a new copy of the array – useful to alter everything together

👀 Reading hidden code
672 μs

Painting a piece of an image

  • Let's paint a corner red

  • We'll copy the image first so we don't destroy the original

👀 Reading hidden code
405 μs
new_phil = copy(head)
👀 Reading hidden code
2.0 ms

👀 Reading hidden code
241 μs
red = RGB(1, 0, 0)
👀 Reading hidden code
13.4 μs
for i in 1:100
for j in 1:300
new_phil[i, j] = red
end
end
👀 Reading hidden code
90.6 μs

Note that for loops do not return anything (or, rather, they return nothing)

👀 Reading hidden code
265 μs
new_phil
👀 Reading hidden code
8.6 μs

Element-wise operations: "Broadcasting"

  • Julia provides powerful technology for operating element by element: broadcasting

  • Adding "." applies an operation element by element

👀 Reading hidden code
465 μs
begin
new_phil2 = copy(new_phil)
new_phil2[100:200, 1:100] .= RGB(0, 1, 0)
new_phil2
end
👀 Reading hidden code
983 μs

👀 Reading hidden code
209 μs
new_phil2
👀 Reading hidden code
8.7 μs

Modifying the whole image at once

  • We can use the same trick to modify the whole image at once

  • Let's redify the image

  • We define a function that turns a colour into just its red component

👀 Reading hidden code
492 μs
redify (generic function with 1 method)
function redify(c)
return RGB(c.r, 0, 0)
end
👀 Reading hidden code
418 μs
begin
color = RGB(0.9, 0.7, 0.2)
[color, redify(color)]
end
👀 Reading hidden code
43.5 μs

👀 Reading hidden code
168 μs
redify.(philip)
👀 Reading hidden code
113 ms

Transforming an image

  • The main goal of this week will be to transfrom images in more interesting ways

  • First let's decimate poor Phil

👀 Reading hidden code
23.1 ms
poor_phil = decimate(head, 5)
👀 Reading hidden code
377 μs

👀 Reading hidden code
185 μs

Experiments come alive with interaction

  • We start to get a feel for things when we can experiment!

👀 Reading hidden code
363 μs
begin
Pkg.add("PlutoUI")
using PlutoUI
end
👀 Reading hidden code
❔
   Resolving package versions...
    Updating `/tmp/jl_4mrqNz/Project.toml`
  [7f904dfe] + PlutoUI v0.7.23
    Updating `/tmp/jl_4mrqNz/Manifest.toml`
  [6e696c72] + AbstractPlutoDingetjes v1.3.2
  [47d2ed2b] + Hyperscript v0.0.4
  [ac1192a8] + HypertextLiteral v0.9.5
  [b5f81e59] + IOCapture v0.2.5
  [682c06a0] + JSON v0.21.4
  [69de0a69] + Parsers v2.8.1
  [7f904dfe] + PlutoUI v0.7.23
  [410a4b4d] + Tricks v0.1.10
4.0 s

👀 Reading hidden code
193 μs
1
@bind repeat_count Slider(1:10, show_value=true)
👀 Reading hidden code
238 ms
repeat(poor_phil, repeat_count, repeat_count)
👀 Reading hidden code
250 μs

Summary

  • Images are readily-accessible data about the world

  • We want to process them to extract information

  • Relatively simple mathematical operations can transform images in useful ways

👀 Reading hidden code
414 μs
👀 Reading hidden code
288 μs
expand (generic function with 2 methods)
👀 Reading hidden code
671 μs
extract_red (generic function with 1 method)
👀 Reading hidden code
389 μs
decimate (generic function with 2 methods)
👀 Reading hidden code
726 μs

Appendix

👀 Reading hidden code
173 μs

Package environment

👀 Reading hidden code
194 μs

Camera input

👀 Reading hidden code
181 μs
camera_input (generic function with 1 method)
👀 Reading hidden code
1.4 ms
process_raw_camera_data (generic function with 1 method)

function process_raw_camera_data(raw_camera_data)
# the raw image data is a long byte array, we need to transform it into something
# more "Julian" - something with more _structure_.
# The encoding of the raw byte stream is:
# every 4 bytes is a single pixel
# every pixel has 4 values: Red, Green, Blue, Alpha
# (we ignore alpha for this notebook)
# So to get the red values for each pixel, we take every 4th value, starting at
# the 1st:
reds_flat = UInt8.(raw_camera_data["data"][1:4:end])
greens_flat = UInt8.(raw_camera_data["data"][2:4:end])
blues_flat = UInt8.(raw_camera_data["data"][3:4:end])
# but these are still 1-dimensional arrays, nicknamed 'flat' arrays
# We will 'reshape' this into 2D arrays:
width = raw_camera_data["width"]
height = raw_camera_data["height"]
# shuffle and flip to get it in the right shape
reds = reshape(reds_flat, (width, height))' / 255.0
greens = reshape(greens_flat, (width, height))' / 255.0
blues = reshape(blues_flat, (width, height))' / 255.0
# we have our 2D array for each color
# Let's create a single 2D array, where each value contains the R, G and B value of
# that pixel
RGB.(reds, greens, blues)
end
👀 Reading hidden code
1.4 ms